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Some covariant representations of massless Fermi fields 
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$ Department of Mathematics, Bedford College, Regents Park, London NW1 4NS, 
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Received 15 January 1981 

Abstract. We study the class of pure quasi-free gauge invariant states of the Fermion 
algebra. We show that the question of G-covariance of the corresponding representations 
(i.e. implementability of some group G of one-particle symmetry transformations) is related 
to a cohomology group with values in the Hilbert-Schmidt class. In four-dimensional 
space-time, this cohomology is shown to be non-trivial, thus leading to G-covariant 
non-Fock representations, when G is taken to be the space-time translation group together 
with rotations, or space-time translations together with boosts in one direction and 
rotations about it, and the Fermion mass is zero. In two space-time dimensions, some new 
fully Poincart covariant representations for free massless Fermions are constructed. 

1. Introduction 

The C*-algebra approach to quantum field theory (Haag and Kastler 1964) has proved 
useful in helping us to understand some qualitative features of quantum physics, such as 
the occurrence of superselection rules, spontaneously broken symmetry or the collec- 
tive motion of matter. In principle, the C*-algebra under consideration may be limited 
to the set of local bounded observables. In practice, it is often easier to construct a 
larger algebra, the so-called field algebra, of which the observable algebra is a 
subalgebra. We shall do this in this paper, by considering first the CAR-algebra over a 
complex Hilbert space YC, thus: Let a:YC+% be an antilinear map from YC into a C* 
algebra % obeying the canonical anti-commutation relations (CAR) 

The C*-algebra generated by a (YC) is denoted %(YC), and is called the CAR-algebra (or 
Fermion algebra) over 7'. YC is called the one-particle space. 

To discuss the observable algebra and its symmetries, let G be a group acting on YC 
by unitary operators { V,, a E G}. Then there exists a unique * automorphism of 3, say 
T,, for each a E G. If V, is a true representation, {T,, a E G} realises G in Aut %, and T, 

reduces to V, on the one-particle operators a(!) :  

7, (a  (f)) = a (Vaf) f E YC. (2) 

We shall always assume that V, is continuous in a. Then the automorphisms T, are 
continuous in a as well. 

0305-4470/81/092467 + 12$01.50 @ 1981 The Institute of Physics 2467 
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An important case is where G = U ( l )  and V, = e'". Then the corresponding 
automorphisms T,  are called gauge transformations. The set of fixed points of {T,} can 
be shown to form a sub-C*-algebra of a, denoted by Q by Araki and Wyss (1963); this 
may be taken to be the algebra of observables of the theory. 

Another important case is where G = P, the PoincarC group (the inhomogeneous 
Lorentz group), or rather, its covering group ISL(2, C), and V is an irreducible 
representation of P, of mass m a 0 and spin (or Ihelicityl) s = i, $, , , . . Then the 
C*-algebra %(YL), together with the PoincarC automorphisms { T ~ ,  E E P}, is called the 
free relativistic Fermi-Dirac algebra of mass m and spin s. 

We are interested in finding 'covariant' representations of a(3"); a representation T ,  

acting on a Hilbert space H,, is G-covariant if there exist unitary operators U, on H, 
such that 

U,T( Y )  U,' = T ('7" ( Y ) )  CY€G Y E  %(X)  (3) 

where T,, a E G, is given by (2). We say T is continuously G-covariant if U, (which is 
not unique) may be chosen to be locally continuous in a, which is equivalent to its being 
ray continuous. A continuously time-translation covariant representation r is said to 
have positive energy if the generator of time translation 

may be chosen to be non-negative. 
from a 

G-invariant state w using the Gelfand-Naimark-Segal construction (Emch 1972). In 
this case, continuity of U, on H,, follows from continuity of V, on YL. For example, we 
obtain a gauge covariant representation by starting with a gauge-invariant state w.  In 
this paper, we shall consider gauge-invariant quasi-free states (Shale and Stinespring 
1964, Segal 1962): W A  is a state with n-point function 

A simple way to obtain a G-covariant representation .sr, is to build 

w a ( a ( f n ) *  . . a ( f d * a k d  . a(gm)) = & m  det[(gi, Ah)].  (4) 

Here, A is a complex-linear operator on YC such that 0 c A c 1. It is known (Powers and 
Starmer 1970) that W A  is pure if and only if A is a projection. We shall treat only this 
case. Particularly simple examples are the Fock state oo ( A  = 0) and the anti-Fock state 

We could similarly obtain a P-covariant representation by starting from a P- 
invariant state, for example, a so-called Shale state (Shale and Stinespring 1964). 
However, it is known that the only representation of the free Fermi-Dirac algebra with 
positive energy obtained in this way (and thus having a P-invariant vacuum) is the usual 
Fock representation ro (Weinless 1969). As we are interested in representations T of 
the free dynamics with positive energy, we must forego the existence of a vacuum state 
in H,. Instead, we shall use a state wA of the form (4), and shall analyse the properties 
that A must have in order for T,,,, = rA to be covariant under some group G.  This will 
(8  2) give us a Hilbert-Schmidt cocycle condition, which will be both necessary and 
sufficient for rA to be a continuously G-covariant representation. In § 3 we give an 
example of a positive-energy PoincarC covariant representation in 1 + 1 dimensions, 
and in § 4, a four-dimensional example covariant under boosts in one direction, also 
with positive energy. 

~1 ( A  = 1). 
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2. Cocycles 

Let us write B(Y& for the set of Hilbert-Schmidt operators on a Hilbert space YC, and 
B(YC)' for the set of trace-class operators. Powers and Stormer (1970) prove that a 
necessary and sufficient condition for two irreducible gauge-invariant quasi-free 
representations T A  and 7rB to be unitary equivalent is that 

A - B E B (YC), ( 5 )  

A( l  -B )A  EB(YC)~ and (1-A)B( l -A)  EB(YC)~. (6) 

or that 

In order for the automorphism T, of the form (2) to be implemented in the represen- 
tation rA, there must exist a unitary operator U, such that 

TA(T, ( Y)) = u,TA( Y )  U,' YE WYL).  (7) 
Equivalent to this is that (7) should hold for all Y of the form a ( f ) ,  f E YC. So we need the 
two representations of the CAR 

n A ( a ( f ) )  and rs (a  ( f ) )  r A ( T i l  ( a ( f ) ) )  = rA(a (vi'f)) 
to be equivalent, The first, rA, contains the quasi-free state (4) as a vector state, and the 
second contains the quasi-free vector state w : 

u(a(fn)*.  * a ( f l ) * a ( g l )  * * * a ( g m ) )  

= w A ( d (  vi'fn)* . a(  v i ' g m ) )  

= am, det[( Vi'gi, AVi'fi)] = am, det[(gi, V,AVi'fi)] 

= w v , ~ ~ , ' ( a ( f n ) *  0 - .  a ( g m ) ) *  

Hence, T, is implemented if and only if 

X,=A-V,AV,' EB(YC)~. (8) 

Suppose (8) holds for some group G.  Then the map cy + X ,  is a B(YL)2-valued 1-cocycle 
for G, i.e. it obeys the cocycle condition 

v,x,v,' =X,p -x,* (9) 

x, = c - v,cv,' c E B (Y{)2 (10) 

In this context, a 1-coboundary is a map G + B(YC), of the form 

which is a particular cocycle. Two cocycles are said to be cohomologous if they differ by 
a coboundary. The 'first Hilbert-Schmidt cohomology group, H'(G, B(YL)z) V )  of G 
relative to the representation V' is the vector space of cocycles (obeying (9)) modulo 
coboundaries. (The space of cocycles itself is denoted by Z'(G, B(Y& V).)  We can 
now get our first result. 

Theorem 1. Let T A  be an irreducible quasi-free gauge-invariant representation of the 
CAR-algebra over YC, 6 a group acting on YC by unitary operators { V,, cy E e}, and 

(a) The automorphism T, generated by V, (equation (2)) is implemented if and only 
if X ,  E B(YC),. The set of such cy is a subgroup G of 6. rA is G-covariant, and X ,  is a 
cocycle for G. 

X ,  = A - V,A vi', cy E G. 
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(b) If YC is separable, the cocycle X ,  is continuous and TA is continuously G- 
covariant. 

(c) Suppose { V,, a E G} is irreducible on YC. Then the cohomology class of the 
cocycle X ,  is zero if and only if rA is (unitary equivalent to) either the Fock or the 
anti-Fock representation, and there is a one-to-one correspondence between the set of 
(equivalence classes of) quasi-free gauge-invariant, G-covariant representations that 
are neither Fock nor anti-Fock, and the elements of H1(G, B(YC)z, V) given by cocycles 
X ,  obtained from projections A (equation (8)) not having finite dimension or co- 
dimension. 

Proof. (a) If T, is implemented by U, and 7, by U,, so are T,-I (by U,') and T , ~  (by 
U,U,); thus G is a subgroup. The other statements have been proved already. 

(b) Continuity of X ,  means continuity in the strong topology of B(7C)z induced by 
the Hilbert-Schmidt norm. X ,  is the limit of a sequence of coboundaries, each 
continuous in a, and is therefore measurable. The continuity of X ,  then followst from a 
lemma (0 6 of Araki (1970)). Denote by the unit vector in H,, corresponding to the 
state wA. Since vA is irreducible, the operators U,, and therefore the unit vectors 
Cl%= U,RA, a E G, are unique up to phase factors. We shall prove that these phase 
factors can be chosen such that U, is continuous at the unit element e of G, i.e. 

The appropriate choice of phase factors is achieved by requiring U, = 1 (as usual) and 

( n A 9  a>) = ( R A ,  U a n A )  2 0 a near e. (12) 

It suffices to prove (1 1) for a dense set of vectors @ of the form 

a) = T A  ( Y ) n A  YE iX(YC). 

Then 

11 U,@ - @I/ = IIu,TA( Y)RA - u,~TA( Y) U,' a A  + u , ~ A (  Y )  U,' a A  - TA( y ) ~ A l l  

~ I I ~ A ( y ) I I I I ~ A -  U,' f i A / I + / I r A ( ~ a ( y ) -  y)II. 
Since rA is faithful and the automorphisms T,  are continuous in a, we obtain 

/ l r A ( ~ ,  (Y)  - Y)II = Ib, (Y)  - YII - 0. 
,-e 

Thus it remains to prove that 

I l a A -  U , l ~ A l l = I I ~ , ~ ~ - ~ A ~ l = I l ~ ~ - ~ A l l -  a - e  0. (13) 

This part of the proof is trivial if WA is an invariant state, since then we take U , n A  = R A .  

The states of TA corresponding to CIA and SzZ are WA and w V,AV;l, respectively. 
Define the projections 

A ' =  1 - A  A, = V,AVil A &  = 1 -A, 

and the (non-negative) operators (in B (YC)l, by equation ( 6 ) )  

R, = AA&A R& = A'A,A'. 

t We thank P Basarab-Horwath for this remark. 
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The distance between the two quasi-free states WA and @A, in the norm of %(X)*, the 
dual space of %(YC), is given by (Powers and Starmer (1970, theorem 2.6)) 

(14) llWA - WA, 11 = 2 J 1  - 8, 8, = min(det(1 -R,), det(1 -R&)}. 

Since X ,  is continuous, for any E > 0 

IIV,AVi' -AIIz=IIAP-AIIz<~ 

in a suitable neighbourhood N c G of e. ( 1 1  * 112 denotes the Hilbert-Schmidt norm.) Thus 
for (Y E N  

llA,-All:=Tr[(A, -A) ' ]=T~(R,+R&)<E '  

T rR ,<e2  Tr R &  < E < 1 
so that 

if E < 1. 

For any non-negative operator R E B(YC)l with Tr R < 1 (and thus R < 1) we have 

Tr(R ") s IIR 11 Tr(R n - l )  s Tr R Tr(R"-') s . . . s (Tr R)" 

TrIg( l -R)=Tr(-R-&Z-&3-I ,  .) 

-Tr R -i(Tr R)'-;(Tr R)3- . . . = Ig(1 -Tr R )  
and thus 

det(1-R)=exp(Trlg(l-R))>exp(lg(l-TrR))= 1-Tr R. 

Applying this to R, and R&, we obtain 

8, > 1 - E 2  if (Y E N. 

On the other hand, the norm distance between two vector states w and w ' ,  correspond- 
ing to unit vectors R, R', of an irreducible faithful representation T of a C*-algebra %, 
is given by 

IIw - WIII = Trl IR>(Rl - IR')(R'l I 
= 2(1 - I(sz, Rr)lz)1'2. 

Comparison with (14) yields 

I(aA, flZ)lz = 8,. 

Thus, with (12), (15) and (16), 

IlR, - Rz1I2 = 2 - 2 Re (RA, Rz)  = 2(1- (RA, RZ)) 
G 2( 1 - (RA, RZ>2) = 2(1- l(RA, RZ>/*) 

= 2(1 -8,) < 2E2 i f a E N  

which proves (13) and thus (11). 
As rA is irreducible, V,U, and UaP differ at most by a phase factor, and therefore 

U, induces a ray representation of G. Equation (11) implies that this ray represen- 
tation is continuous near the identity, and thus everywhere on G. 

If, moreover, G is a simply connected Lie group, then U, can be chosen to be 
continuous everywhere (Bargmann 1954). 

(c) By (3, rA is equivalent to the Fock representation iff d imA<m. Then 
A E B(YC)z, i.e. X ,  is a coboundary, thus defining the zero cohomology class. Likewise, 
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if  IT^ is the anti-Fock representation, then codim A < a, 1 - A  E B(Y& thus X ,  = 
V,(1 -A)V,' - ( 1  - A )  is again a coboundary, and this representation, too, gives the 
zero cohomology class. 

Conversely, if X ,  has the form (8) and gives the zero cohomology class, then 

A - V,A V,' = C - V,CV,' for some C E B(7C)2. 

Then 

C - A =  V,(C-A)Vzl for all cy E G. 

But V, is irreducible, so C - A  = A  1, i.e. 

C = A  + A  1 = (1 + A)A +A(l - A )  EB(Y&. (17) 

This can only be true if A = 0 and dim A < 00, or if A = -1 and codim A < 00. Therefore 
the representation is either Fock or anti-Fock. This proves the first part of (c). 

and w ~ ,  both of the form (4) with projections A and B, to be 
G-covariant states, and denote the corresponding cocycles, given by (8) and a similar 
formula with B, by X ,  and Y,. If ITA E ITB, then A - B  = C E B(YC)2 and X ,  - Y, = 
C - V,CV,' is a coboundary. Hence equivalent representations give rise to 
cohomologous cocycles. Conversely, suppose that two cocycles X,, Y, in the same 
cohomology class can both be written in the form (8) with projections A and B 
respectively. We have to show that ITA is equivalent to  IT^ if X ,  is not a coboundary. But 
X ,  - Y, is a coboundary, so 

Now suppose 

X ,  - Y, = A - V,A vi' - (B  - v,sv;l) 
c E B(YC)2 = c - V,CV,' 

and therefore A - B  - C commutes with V,, cy E G .  Since V, is irreducible, we have 

A - B  = C + A l .  

Since A - B is Hermitean, we get C" - C = 2i Im A * 1 E B(YC)2, which is impossible 
unless C* = C and A E R. If A = 0,  IT^ and ITB would be equivalent, as required. If 
A < 0, we argue as below with A and B interchanged. So we take A > 0.  Then 

A a C + A l  CEB(yC)2 A > O .  

But this operator inequality is impossible unless codim A <CO, which means that ITA is 
the anti-Fock representation, and X,  is in the zero cohomology class. (Let codim A = 
CO, and take a countable basis { A }  in (1 -A)YC. Since fi + 0 weakly and C is compact, 
Cfi + 0 strongly, and thus 

O=(fi,Afj)s(fi, Cfi)+A "A > O  
I 

which is a contradiction.) Hence, if X ,  is not in the zero cohomology class, A = 0, and 
ITA and  IT^ are equivalent. This proves the theorem. 

The classification of representations of '21(YC) given by theorem 1 also provides a 
classification of representations of the observable algebra 0. This follows from the 
result of Araki and Wyss (1963) which implies that if ITA and ITB are inequivalent 
representations of %(YC), they define inequivalent representations of Q (with cyclic 
vectors i2A and i 2 B ) .  Consequently, the states W A  and WB are separated by a super- 
selection rule. 
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If V, is reducible, there exists a projection A, not 0 or 1, commuting with V,. The 
representation TA then gives rise to the zero cocycle, and is therefore covariant. This is 
what happens in Dirac's theory of the electron 'sea': A is the projection onto the 
negative energy states of YC, which is the direct sum of two subspaces, one of each sign of 
the energy. 

Another example is the free Fermi gas, where the invariance group is E3 x R, R being 
the time evolution. Here we choose A to be the projection onto states with energy 
below the Fermi energy. In this case, the Hamiltonian is not bounded below. 

3. Poincare covariance in 1+1 dimensions 

In this section, we give examples for non-trivial cocycles in Z ' (P1 ,  B(Y& V) for the 
irreducible representation V of zero mass and positive energy and momentum of the 
(proper, orthochronous) PoincarC group P! in two space-time dimensions. Thus, 
YC=(R',dp/p) is the space of 'right-moving' waves, and the action of Poincart 
transformations is 

( ~ ( a ,  ~ ) f ) ( p )  = exp[i(aO - a')pIf(e-*p) (18) 

where 

0 a = ( a  , a') .  
coshh sinhh 
sinhh coshh 

A = (  

The strategy we adopt, in this and the subsequent section, is to partition YC according to 
the spectrum of the one-particle Hamiltonian H :  YC = OiYi, where 

j = 1,2 ,  . . . . YCo: H 3 E O  YG: s j S H H s j - 1  

Suitable sequences of intervals (si ,  ~ ~ - 1 )  will be chosen later. We then have, with F(YC) 
and F(YCj) denoting the Fermion Fock space over YC and YCi, respectively 

Here we use the 'incomplete' infinite tensor product of von Neumann, based on the 
fiducial vector R = oi ai with the Fock vacua sZj of F(YCi); then R is the vacuum in 
F(YC). The direct sumOi  94 reduces the space-time translations V ( a ) ;  therefore, in the 
isomorphism (19), the Fock space translation operators UF(a)  are given in terms of the 
Fock space operators Ui(a) on F(YCi) by 

UF(a)  =On q ( a ) .  (20) 
i 

If in the fiducial vector the vacua ai are replaced by other unit vectors @pi E F(YC,), (19) 
yields new irreducible representation spaces of the Fermion algebra. These are 
continuously translation covariant, with implementing operators given by a cor- 
responding generalisation of (20), if such generalisation makes sense. The following 
result can then be applied. 

Scholium (Kraus et a1 1977). Suppose V ( a )  obeys the spectral condition. Let 

X(YC) = 0" F(Y4) a=@@, 
i i 
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where ai is a Fock state in F(YCi). Then a sufficient condition for the infinite product 

U ( a )  = 0” q ( a )  
i 

to converge to a continuous unitary representation on X(YC) obeying the spectral 
condition, is 

(21) C (@j, Hj@i> < 00 
i 

where Hi 3 0 is the generator of time translations (the Fock Hamiltonian) on F(YCj). 
(For the proof see Kraus et a1 (1977).) 

For the rest of this section, we are dealing with YC = L2(R+, dplp), with V given by 
(18). Let k = lg p ;  then dp/p = dk, and YC is isomorphic to L2(R,  dk)  where, by (18), the 
action of A is translation by A ,  and the one-particle Hamiltonian H is multiplication by 
p = e , Now, let ki = Ig E ~ ,  and take a sequence {fi} of normalised states in L2(R,  dk)  of 
the form 

k 

Ci = constant 
( 0  otherwise 

if kj c k c kiPl 
j = 1 , 2 ,  . . . .  

The normalisation condition gives 

l l f , l l 2 = / ~ , I 2 ~ ~ , - l - ~ / ) =  1. 

A special case, which suffices to give us some cocycles, is obtained by chosing ko = 0 and 

k,-l - k, = j  

Now we take the fiducial vector of the scholium to be 

cl = i-(1+f)’2 & > O  j =  1 , 2 , .  . . . (23) 

@=@a/ @o = Ro @, = a (f,)*R, j =  1 , 2 , .  . , , (24) 

l + E  

I  

i.e. except for j = 0, 0, is a one-particle state in F(YLl), which may be identified with 
f, E YC, since the one-particle subspace of F(YC,) is isomorphic to YC,. Since the Fock 
Hamiltonians H, act on such states as the one-particle Hamiltonian H on YC, condition 
(21) of the scholium is satisfied: 

.lie since, by (23), ki S kj - kj-l = -1 
The fiducial vector (24) describes a state with all the ‘levels’fi filled, i.e. the state wA 

with A = X i  l f i ) ( f i / .  The representation space of TA may thus be identified with 
F(YCi). Using (25) and the scholium, we see that space-time translations in rA are 

implemented and obey the spectral condition. 
= 

f,, - V(A)fi satisfy 

. 

We now show that rA is continuously Lorentz covariant. The vectors 

llgjhll’ = 21A IC; = 2/A I j--(’+&). ( 2 6 )  
Let V(A)fj=fjh. Then 

I fi>( f,’ I - 1 f i A  ) ( f i A  I = \&A > ( f j  I + I f i A  )(&A 1 .  
The intervals kj-1 - ki = j l + €  increase in size with increasing j ,  whereas V(A) is a fixed 
translation k + k + A .  So, for all j beyond a certain i o  (depending on A ) ,  the only values 
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of k for which operators like 

2475 

(27)  

can be non-zero, are k = j ,  j *  1 .  Hence, with AA = V(A)AV*(A), 

The trace norm of the first term is finite, say C. The second term contains for each j a k 
sum over ~ 1 2  operators of rank 1 ,  of the form (27)  etc. The operator (27)  has the trace 
norm 

Similarly, since llfiAll = 1 as well, all 12 operators have trace norms bounded by IlgjA112 or 
~ ~ g j A ~ ~ ~ ~ g j * l , A ~ ~ *  By (26) ,  these bounds are never greater than 2(Al(j - l)-('+'), and there- 
fore 

IIA = Tr((A - A d 2 )  

sc+  1 4 ~ k i A ~ ~ ~ ~ g k A ~ ~  

C C + 1 2 * 2 / A \ 1  1 j--( '+&)<w. 

j> jo  k = j , j * l  

i a i o  

For small enough IA I (e.g. IA 1 < l ) ,  we have j o  = 0, i.e. C = 0, and thus 1/A -A,&+ 0 as 
A + 0. Together with the cocycle identity ( 9 ) ,  this shows that A -AA, A EL, is a 
continuous cocycle in B(Y& and T A  is indeed continuously L! covariant. Collecting, 
we obtain the following theorem. 

Theorem 2. Let A = Zi Ifi)(fil withfi given by (22)  and (23) .  Then rA is a continuously 
PI-covariant non-Fock representation of the CAR with positive energy. 

We finally remark that Xi converges in Y', as 

1 1 IlgiAlillgkAll 
j> jo  k=j,j+l 

,I IlgiA112 
l a l o  

Putting X j g i A  = g ( A ) ,  we see that g ( A )  is a cocycle in Z1(LI, YL, V) of the type 
discovered by Basarab-Horwath et a1 (1979) to give a covariant non-Fock represen- 
tation of the CCR. 
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4. Boost-covariant representations in (3 + 1) dimensions 

We have not been able to find any cocycles for P l  in s + 1 dimensions, s > 1. This may 
be related to the fact that the one-particle cohomology is trivial? (Basarab-Horwath 
et a1 1979). In this section, we shall give examples of cocycles for interesting sub- 
groups. Fully covariant, but reducible, representations can then be obtained by an 
inducing construction (Basarab-Horwath et a1 1979). 

It is easy to construct representations which are covariant under space rotations 
S0(3)-or rather, the covering group SU(2)-and space-time translations. Let YC = 
L2(R3, d3p/Ipl) (with p =momentum), and let V be the massless representation of 
helicity s. Naturally, we choose s = i i, *;, . . . to conform to the spin-statistics theorem 
(Streater and Wightman 1978). Now choose a decreasing sequence {si}, and form the 
(rotation-invariant) spaces 

YCj = L 2 { p :  E j + l s I p l s & j } = Y L .  

In each space 74, we select a projection Pi, of finite dimension di, onto some subspace 
invariant under SU(2), and take A = Xi Pi. Choose and di such that Xi diEj < 00. Then, 
by the scholium, T A  is translation covariant with positive energy. It is clearly SU(2) 
covariant. Similar models have been discussed by Doplicher (1966). 

We now construct representations rA covariant under boosts in one direction, and 
rotations about it. Standard Wigner-Mackey theory (Mackey 1963, 1976) shows that 
the action of a rotation by 0 about x3 is 

( ~ ( ~ ) f ) ( p )  = e’”f(p1 cos o + p 2  sin O, -pl sin 0 + p 2  cos O, p 3 )  

and that the action of a boost of rapidity A, along xi, is 

(V(A ) f ) ( P )  = f ( P ’ )  p ’ =  (PI,  p2 ,  - ] p i  sinh A + p 3  cosh A ) .  

Let A = E j  I f i ) ( f j l ,  where ~ E Y C  is a step function equal to a real constant Ci on the 
cylinder 

Zi: E ~ + ~ C P ~ C E ~  p?i + p ;  c r; (28) 
and zero outside (figure 1). Since A commutes with V ( O ) ,  rotations about x3 are 
implemented in TA. We make the choice ri = €,+I, c 0  = 1 and E ~ / E ~ + I  = sinh(j ). Then 

+ 0 exponentially as j + CO, so the sum of the average energies of the occupied states fi 
rapidly converges. By the scholium, space-time translations are implemented, and the 
spectrum condition holds in TA. 

Now consider boosts with A > 0 in the third direction. They do not change p1 or p 2 ,  
so the support of V(A)f, is constrained, as for fi, to the region p :  + p i  s r i .  But the 
support of V(A)fi as a function of p 3  is shifted, so that the bottom of the cylinder 2, is 
moved to the cap CT, and the top is moved to the cap CT. The largest shifts occur at the 
edges, and are measured by 

ai = (ei+l + ri ) 

IC8 

2 

2 2 1 / 2  sinh A + ~ j + l  cosh A = DAE,+I 
2 2 1/2 bj = ( E ,  + ri ) 

DA = J% sinh A +cosh A 

sinh A + E ~  cosh A < DAei 
with 

(see figure 1). 

+ Basarab-Horwath and Polley (1981) have,now proved that the Hilbert-Schmidt cohomology is also trivial in 
(3  + 1) dimensions. 
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t P3 

Figure 1. 

For any given A ,  DAej+l< e j  for large j ,  and < ej-1. Hence V ( A ) f j  is orthogonal 
to all f k  except f ,  and f,-l, if j is large. The normalisation condition is, with p = 
(P: + P W  

which leads to the inequality 

= 2~ Ig DAc;r;  S 2 lg DA (jl+’ - sinh-’ 

by (30). Therefore, as in the preamble to theorem 2, 

is of trace-class, and its trace goes to zero as A + 0 since, by (29), DA -+ 1 for A -+ 0. 
If A < 0, we note that l l f i  - V ( A ) f j i l  = /I f j  - V(-A)hll, and that V ( - A ) f ,  is orthogonal 

to all f k  except f j  andfi-’ if j is large; so the calculation is the same as for A > 0. Thus, we 
have the theorem given below. 
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Theorem 3. Let A = Zi I f ; . ) ( f i l ,  where fi is a one-particle wavefunction in (3 + 1)- 
dimensional space-time which is constant on its support (28) in momentum space. Then 
rA is covariant under space-time translations, rotations about x3 and boosts along x 3 ,  
and obeys the spectral condition. 

We note, as before, that in this model 

d N  = c ( f ; .  - Y(Nf;..) A E G  
i 

is a cocycle in Z’(G, YC, V )  for the subgroup G c L! generated by the x3-boosts and 
x3-rotations, and thus defines a displaced Fock representation of the CCR (Basarab- 
Horwath et a1 1979) covariant under G. (In this case, the ‘natural’ helicities would be 
s = 0, k l ,  k 2 , .  . . , but the choice of s was arbitrary anyway in the foregoing cal- 
culations.) 
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